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Abstract: Althoughoneoftenhasdetailed informationaboutparticipants inaprogram, the lackofcomparable
information on non-participants precludes standard qualitative choice estimation. This challenge can be
overcome by incorporating a supplementary sample of covariate values from the general population. This
paper presents new estimators based on this sampling strategy, which perform comparably to the best
existing supplementary sampling estimators. The key advantage of the new estimators is that they readily
incorporate sample weights, so that they can be applied to Census surveys and other supplementary data
sources that have been generated using complex sample designs. This substantially widens the range of
problems that can be addressed under a supplementary sampling estimation framework. The potential
for improving precision by incorporating imperfect knowledge of the population prevalence rate is also
explored.

Keywords: qualitative response, discrete choice, choice-based sampling, supplementary sampling, contami-
nated controls
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1 Introduction
Often providers of a program or service have detailed information about their clients, but only very lim-
ited information about potential clients. Likewise, ecologists frequently have extensive knowledge regarding
habitats where a given animal or plant species is known to be present, but they lack comparable informa-
tion on habitats where they are certain not to be present. In epidemiology, comprehensive information is
routinely collected about patients who have been diagnosed with a given disease; however, commensurate
information may not be available for individuals who are known to be free of the disease. While it may be
highly beneficial to learn about the determinants of participation (in a program or service) or presence (in
a habitat or of a disease), the lack of a comparable sample of observations on subjects that are not partici-
pants (or that are non-present) precludes the application of standard qualitative response models, such as
logit or probit.
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In fact, though, if a supplementary random sample can be drawn from the general population of interest,
it is feasible to estimate conditional response probabilities. Importantly, this supplementary sample need
not include information on whether the subjects are participants or non-participants, present or not present.
Rather, it only must include measures of the relevant covariates, comparable to those collected from the
primary sample (of subjects that are participants or that are present). This sampling scheme, involving a
primary sample consisting exclusively of participants and a supplementary sample that includes both partic-
ipants and non-participants, has been assigned various names in the literature, including “use-availability
sampling”, “supplementary sampling”, “case control sampling with contaminated controls”, “presence
pseudo-absence sampling”, and “presence-background sampling”.1

The existing literature on qualitative response estimation under this sampling scheme (see, for example,
Cosslett 1981, and Lancaster and Imbens 1996) has focused on developing efficient estimators for the case
where the primary and supplementary samples are each unstratified random samples from their respective
underlyingpopulations.Unfortunately,however,generalizationof theseestimators tomorecomplexsampling
schemes can be challenging and requires detailed knowledge of the designs of both samples. This precludes
theapplicationof theseestimatorswhen the requisite sampledesign information isnotavailable. For instance,
applications basedon supplementary samples from largeCensus data sources, such as theCurrent Population
Survey and the American Community Survey are ruled out, because the stratification criteria and other design
details are not publicly disclosed.2

Our new estimators are derived using an approach that is very similar to that used in the earlier work
by Cosslett (1981) and Lancaster and Imbens (1996). The key difference is that our derivation relies on the
empirical distribution of the covariates in the supplementary sample, whereas theirs relies on the empirical
distribution in the combined (primary and supplementary) sample. This new approach leads to estimators
that are based on moments, computed separately from each sample, that involve the absolute probability
of participation rather than the conditional probability of selection into one of the samples. Consequently,
these new estimators are readily adapted tomore complex sampling designs. In particular, one can separately
construct weighted versions of the moments within each sample using the available sample weights.

The remainder of this paper is organized as follows. To motivate our estimators for the empirically
relevant case where the distribution of the covariates is unknown, Section 2 begins by outlining a consistent
estimation method for the case where the distribution is known. Section 3 then demonstrates how a very
similar approach can be implemented when the covariate distribution is unknown, leading to estimators
that are relatively easy to apply even under fairly complex sampling designs. A method for generating more
precise estimates when uncertain information about the prevalence rate is available is provided in Section 4.
Section 5 offers some considerations for applying the new estimators, and Section 6 concludes. Proofs for
the consistency of the new estimators are provided in Appendix A. Appendix B presents some Monte Carlo
simulation results, which show that the new use-availability sampling estimators perform comparably to the
best existing estimators in small unstratified samples.

2 Known Covariate Distribution
Following the notation of Lancaster and Imbens (1996), let y be a binary indicator equal to 1 (for partici-
pation/presence) or 0 (for non-participation/non-presence), and let x represent a vector of discrete and/or
continuous covariateswith cumulative distribution function F (x).We assume that the conditional probability

1 Discussions of applications of use-availability sampling in various fields include Breslow (1996) [epidemiology]; Keating and
Cherry (2004), Royle et al. (2012), and Phillips and Elith (2013) [ecology]; Erard et al. (2020) [tax compliance]; and Rosenman,
Goates, and Hill (2012) [substance abuse prevention programs].
2 Even if all sample design informationwere publicly available, it would be extremely difficult to generalize these existingmodels
to account for the complexity of the designs.
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of participation given x follows a known parametric form, Pr (y = 1|x; 𝛽) = P (x; 𝛽), where 𝛽 is an unknown
parameter vector we desire to estimate. Finally, we define the prevalence rate q (the marginal probability that
y equals 1) as:3

q = ∫ P (x; 𝛽) dF (x). (1)

2.1 Identification
Suppose we have a random sample of size N1 from the subpopulation of cases with y equal to one. The
conditional distribution of x given y = 1 is defined as:

g(x|y = 1) = P(x; 𝛽) f (x)
q , (2)

where f (x) is the probability density (mass) function associated with x, which is assumed not to depend
on 𝛽. If f (x) is known, it follows from Eq. (2) that the function P(x; 𝛽)∕q is nonparametrically identified
under such a sampling scheme. In many instances, one will be able to measure (at least to some degree of
confidence) the value of q. For instance, one may have a reasonably reliable estimate of the take-up rate for
a particular government program or the prevalence rate for a given disease. If q is known, then P(x; 𝛽) is also
nonparametrically identified.

When q is unknown, the relative conditional response probability [P(x1; 𝛽)∕P (x2; 𝛽)] continues to be
nonparametrically identified. However, identification of 𝛽 in this case relies on the functional form that has
been assigned to P(x; 𝛽). For certain specifications, it is not possible to separately identify all of the elements
of 𝛽. For instance, under a linear probability model, P(x;𝛽0,𝛽1)

q =
(
𝛽0
q

)

+
(
𝛽1
q

)′
x, so that only the ratio of each

element of 𝛽 to q is identified. Ecologicalmodels of resource selection often rely on an exponential (log-linear)
probability model. Under this specification, ln

(
P(x;𝛽0,𝛽1)

q

)

= (𝛽0 − lnq)+ 𝛽1
′x. In this case, each of the slope

coefficients of the conditional response probability is identified, but the intercept is not.4
Fortunately, the above two cases are exceptional. As discussed by Solymos and Lele (2016), all of the

elements of 𝛽 are identified under most parametric specifications of the conditional response probability,
including the logit, probit, arctan, andcomplementary log–logmodels, so longas the specification includes at
least one continuous covariate. Nonetheless, although formal identification can easily be achieved by relying
on commonly used parametric specifications, one will tend to have less confidence in the quality of estimates
of absolute probabilities than estimates of relative probabilities when the prevalence rate is unknown.

2.2 Estimation
If the joint distribution of the covariates F (x) is known, consistent estimation of the conditional response
probability parameters is relatively straightforward. Consider first the case where the prevalence rate q
is unknown. From Eq. (2), the conditional probability of the covariates x given participation is equal to
P (x; 𝛽) f (x)∕q. So the likelihood function for a sample of N1 participants can be specified as:

L =
( N1∑

n=1
ln (P (xn; 𝛽))+ ln ( f (xn))

)

− N1 ln (q) (3)

3 When x is discrete, the corresponding formula is: q = ∑ p (x) f (x), where f (x) is the probability mass function.
4 Under pure choice-based sampling (which is referred to as a “case-control sampling” by epidemiologists and ecologists),
the function

(
P(x;𝛽)

1−P(x;𝛽)

)(
1−q
q

)

is identified rather than
(
P(x;𝛽)
q

)

. As a consequence, the intercept of the logit specification is not
identified under a pure choice-based model when the prevalence rate is unknown, whereas it is the intercept of the exponential
probability specification that is not identified under a supplementary sampling design.
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where, from Eq. (1), q is constrained to equal ∫ P (x; 𝛽) dF (x). After substituting this expression for q into
the objective function, an estimate of 𝛽 can therefore be obtained by maximizing the concentrated likelihood
function:5

max
𝛽

( N1∑

n=1
ln

(
P(xn; 𝛽)

)
)

− N1 ln
(

∫ P (x; 𝛽) dF (x)
)

. (4)

An estimate (q̃) of the prevalence rate can be obtained, if desired, using the formula q̃ = ∫ P
(
x; 𝛽̃

)
dF (x),

where 𝛽̃ represents the estimated value of 𝛽.
If theprevalence rate is known,onecan insteadestimate𝛽 by solving the followingconstrainedmaximum

likelihood estimation problem:

max
𝛽

N1∑

n=1
ln

(
P(xn; 𝛽)

)
s.t. q = ∫ P (x; 𝛽) dF (x) . (5)

As shown in Appendix A, the consistency of these estimators can be verified using the same lemmas
employed byManski andMcFadden (1981) to establish the consistency of their choice-based sampling estima-
tors. Rather remarkably, then, if one actually knew the covariate distribution, it would be possible to estimate
the conditional probability of participation using a sample that consists entirely of participants.

3 Estimation under a Use-Availability Design
In most practical applications, the joint distribution of the covariates is unknown. However, we can over-
come our ignorance of the covariate distribution by incorporating a supplementary sample of covariate
values from the overall population. Under the baseline use-availability design discussed in this paper,
a primary sample of N1 observations is randomly drawn from the subpopulation of participants, and a
separate supplementary sample of N0 observations is randomly drawn from the general population. How-
ever, estimation under more complex designs, such as stratified sampling within one or both samples, is
also explored.

As noted by Lancaster and Imbens (1996), the supplementary sample under a use-availability design
would permit identification of f (x), while the primary sample would permit identification of P(x; 𝛽)f (x)∕q.
Consequently, the function P(x; 𝛽)∕q continues to be non-parametrically identified under this approach, as
does the vector 𝛽 of conditional response probability parameters when the prevalence rate is known.

3.1 Estimation when F (x) and q are Both Unknown
To motivate our new estimator for the case where both the covariate distribution and the prevalence rate are
unknown,webeginbyderiving the estimator thatwas independentlydeveloped for this casebyCosslett (1981)
and Lancaster and Imbens (1996). In our presentation, we explain why it can be challenging to implement
a generalized version of their estimator that is appropriate under more complex sampling designs, and we
discuss how our new estimator avoids this difficulty.

3.1.1 The Cosslett-Lancaster-Imbens Estimator

Following the approach of Lancaster and Imbens (1996), this estimator is initially derived based on the
assumption that the covariate x is discrete with K known points of support. The resulting estimator is
then shown to be more generally applicable to cases involving continuous covariates. Whereas the share of

5 The term ln ( f (xn)) has been excluded from Eq. (4) since f (x) is assumed not to depend on 𝛽.
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observations in the primary sample (N1∕N) is treated as fixed under our estimation framework, Lancaster
and Imbens assume more generally that this share is randomly determined through N trials of a Bernoulli
process with parameter h.6 Under this process, h represents the probability that an observation is drawn from
the subpopulation of participants for the primary sample, while (1− h) represents the probability that the
observation is drawn from the general population of participants and non-participants for the supplementary
sample.

Building on Eq. (2) above, the probability g(xk) that the discrete covariate x is equal to xk in the combined
sample can be expressed as:

g(xk) =
[

h
(
P (xk; 𝛽)

q

)

+ (1− h)
]

f (xk) , k = 1,… ,K, (6)

where f (xk) represents the unconditional probability that x is equal to xk. The conditional probability that
an observation from the combined sample with value x = xk belongs to the primary sample may therefore
be expressed as R(xk; 𝛽, q, h) =

(
hP(xk;𝛽)∕q

hP(xk;𝛽)∕q+1−h

)

. This leads to the following constrained maximum likelihood
problem:

Max
𝛽,q,h,g(x1),…,g(xK )

L =
K∑

k=1
N1k ln (R (xk; 𝛽, q, h))+ N0k ln (1− R (xk; 𝛽, q, h))+ Nk ln (g (xk)) (7)

s.t.
K∑

k=1
g(xk) = 1 and

K∑

k=1
R (xk; 𝛽, q, h) g(xk) = h.

In this expression, N1k (N0k) represents the number of observations in the primary (supplementary) sample
with covariate value x = xk andNk = N0k + N1k. If one substitutes the empiricalmass function of the covariate
within the combined sample

(

g̃(xk) = Nk
N ; k = 1,… ,K

)

inplaceof the theoreticalmass functionandoptimizes
over the remaining parameters, Lancaster and Imbens have demonstrated that one obtains h̃ = N1∕N as a
consistent estimator of h, while consistent estimators of 𝛽 and qmay then be obtained from themuch simpler
unconstrained optimization problem:

max
𝛽,q

L =
K∑

k=1
N1k ln

(
R
(
xk; 𝛽, q, h̃

))
+ N0k ln

(
1− R

(
xk; 𝛽, q, h̃

))
(8)

Equivalently, this optimization problem may be expressed as:

max
𝛽,q

L =
N∑

n=1
sn ln

(
R
(
xn; 𝛽, q, h̃

))
+ (1− sn) ln

(
1− R

(
xn; 𝛽, q, h̃

))
, (9)

where sn is an indicator equal to 1 for observations from the primary sample and 0 for those from the
supplementary sample.7 The first-order conditions for this problem are:

N∑

n=1

P′
𝛽
(xn; 𝛽)

P (xn; 𝛽)
(
sn − R

(
xn; 𝛽, q, h̃

))
= 0 (10)

− 1
q

(

N1 −
N∑

n=1
R
(
xn; 𝛽, q, h̃

)
)

= 0, (11)

6 This generalization plays an important role in the Lancaster-Imbens estimator for the case of a known prevalence rate. For that
estimator, the restriction∑N

n=1R (xn; 𝛽, q, h) = Nh plays an analogous role to our restriction∑N0
j=1P

(
x j; 𝛽

)
= N0q. In our estimation

framework, the estimator ofh (N1∕N) is completely independent of the estimators for the other parameters, so it ismore convenient
to condition the analysis on the observed values of N1 and N0.
7 Cosslett (1981) derives the same estimator based on the maximization of the following pseudo-likelihood function:
L = ∑N

n=1sn ln
(
𝜆P(xn; 𝛽)

)
− ln

(

𝜆P (xn; 𝛽)+ N0
N

)

over 𝛽 and 𝜆, where the weight factor 𝜆 is related to the prevalence rate through

the constraint
(

𝜆q+ N0
N

)

= 1.
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whereP𝛽 (x; 𝛽) = 𝜕P(x;𝛽)
𝜕𝛽

. AsnotedbyLancaster and Imbens, this formulationof the samplemoment conditions
does not require knowledge of the points of support for x or otherwise rely on the assumption of a discrete
covariate distribution. Consequently, the scores of the likelihood function can also be used to consistently
estimate the parameters under the more general case involving continuous covariates.

Observe that the above estimators of 𝛽 and q rely on the computation of R
(
xn; 𝛽, q, h̃

)
for each obser-

vation in the combined sample. Under a more general sampling scheme, this expression for the conditional
probability that an observation belongs to the primary sample will depend on the designs for each of the
samples. Consider, for example, the relatively simplemodificationwhere simple random sampling is replaced
by stratified random sampling only in the case of the supplementary sample. Suppose that a normalized set
of sample weights is providedwith the supplementary sample:w0b =

(
Tb
N0b

)(
N0
T

)

, b = 1,… ,B, where B rep-
resents the number of strata, T is the population size, and Tb and N0b respectively represent the population
and supplementary sample counts of observations within stratum b.8 Under this scenario, the generalized
Cosslett-Lancaster-Imbens estimators of 𝛽 and q would be obtained through the following optimization
problem:

max
𝛽,q

L =
B∑

b=1

Nb∑

n=1
snb ln

(
R
(
xnb; 𝛽, qb(q), h̃b

))
+ (1− snb) ln

(
1− R

(
xnb; 𝛽, qb (q) , h̃b

))
, (12)

where R
(
xnb; 𝛽, qb(q), h̃b

)
=

(
h̃bP(xnb;𝛽)∕qb

h̃bP(xnb;𝛽)∕qb+1−h̃b

)

, h̃b = N1b
Nb
, qb =

(
N1b
N1

)(
N0

w0bN0b

)

q,N1b represents the number of
primary sample observations in stratum b, and Nb represents the total number of observations in stratum b
in the combined sample. To implement this generalized estimator, one would need more information than
just the sample weights. Since computation of the stratum-specific terms in Eq. (12) requires the observations
from the two samples to be assigned to a common set of strata, the stratification criteria for the supplementary
sample would need to be available. Furthermore, the underlying stratifiers would need to be present in both
of the samples.

3.1.2 A New Estimator for the Case of an Unknown Prevalence Rate

The derivation of our new estimator for the case of an unknown prevalence rate also begins with the scenario
of a discrete covariate distribution with K known points of support. However, it relies on the empirical
distribution of x within the supplementary sample alone rather than its distribution within the combined
sample. Specifically, rather than estimating g (xk) using g̃ (xk) = Nk

N and specifying the likelihood function in
terms of the conditional probability of sample assignment, we estimate f (xk) using f̃ (xk) = N0k

N0
and rely on an

analogue of the concentrated likelihood function specified in Eq. (4):

Lqunk =
( K∑

k=1
N1k ln (P (xk; 𝛽))

)

− N1 ln
( K∑

k=1
P (xk; 𝛽) f̃ (xk)

)

. (13)

Since f̃ (xk) is a consistent estimator of f (xk),
(∑K

k=1P (xk; 𝛽) f̃ (xk)
)

is a consistent estimation formula for q,
so that maximization of this pseudo-likelihood function over 𝛽 yields consistent estimates of the response
probability parameters. Equivalently, this optimization problem may be expressed as:

𝛽̃qunk = argmax
𝛽

( N1∑

i=1
ln (P (xi; 𝛽))

)

− N1 ln
(∑N0

j=1P
(
x j; 𝛽

)

N0

)

. (14)

8 This formula produces normalized weights with a mean value of one within the supplementary sample in order to ensure
compatibility with the implicit sample weight of one for observations within the primary sample.
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The first-order conditions for this estimator are:
N∑

n=1
sn
P′
𝛽
(xn; 𝛽)

P (xn; 𝛽)
−
(

N1
N0q̂ (𝛽)

)

(1− sn)P′𝛽 (xn; 𝛽) = 0, (15)

where q̂(𝛽) = ∑N0
j=1P

(
x j; 𝛽

)
∕N0. The prevalence rate can be estimated by: q̃qunk = q̂

(
𝛽̃qunk

)
. Thus, the new

estimators of 𝛽 and q jointly satisfy the following sample moment conditions:9

N∑

n=1
sn
P′
𝛽
(xn; 𝛽)

P (xn; 𝛽)
− N1
N0q

(1− sn)P′𝛽 (xn; 𝛽) = 0 (16)

N∑

n=1
(1− sn) (q− P (xn; 𝛽)) = 0. (17)

Aswith the samplemoments associatedwith the Cosslett–Lancaster–Imbens estimators, thesemoments
do not depend on the points of support for x, but rather only on the realized values of the observations. In fact,
they remain valid even when x is not discrete. The consistency of these new estimators in the case of a more
general covariate distribution is established in Appendix A. Intuitively, the analog formula for the prevalence
rate converges to the true formula as the supplementary sample size increases, so that the pseudo-likelihood
function in Eq. (14) converges to the true likelihood function in Eq. (4).10 As discussed below in Section 3.3,
the standard errors of these parameter estimates can be derived from a GMM framework based on the sample
moment conditions presented in Eqs. (16) and (17).

A key advantage of the new estimators of 𝛽 and q is that the likelihood function and its scores involve only
sample-specific terms. Consequently, it is straightforward to generalize these estimators to account for more
complex sampling schemes using only the provided sample weights. For instance, suppose that each of the
samples is exogenously stratified with respective sample weights of w1 and w0, which are normalized to sum
toN1 andN0, respectively. Then the generalized pseudo-likelihood function is: Lw =

(∑N1
i=1w1i ln (P (xi; 𝛽))

)

−
N1 ln (q). Maximization of this function over 𝛽 and q subject to N0q =

∑N0
j=1w0 jP

(
x j; 𝛽

)
yields the generalized

first-order conditions:
N1∑

i=1
w1i

P′
𝛽
(xi; 𝛽)

P (xi; 𝛽)
− N1
N0q

N0∑

j=1
w0 jP′𝛽

(
x j; 𝛽

)
= 0, (18)

N0q−
N0∑

j=1
w0 jP

(
x j; 𝛽

)
= 0. (19)

3.2 Estimation when F (x) is Unknown and q is Known
When the prevalence rate is known, Lancaster and Imbens (1996) again begin by deriving an estimator for
the case where x is discrete with K known points of support, relying on the empirical probabilities g̃(xk) = Nk

N .
As with the unknown q case, this leads to moment conditions involving the conditional probability of
selection into the primary sample R (x; 𝛽, q, h) for each observation in the combined sample. Consequently,
generalization of the estimator for application with more complex sampling schemes is again challenging
and requires detailed knowledge of the designs for each sample.11

9 These moment conditions also can be obtained directly by maximizing the unconcentrated likelihood function
L =

(∑N
n=1sn lnP (xn; 𝛽)

)

− N1 ln(q) subject to the constraint N0q =
∑N

n=1 (1− sn) P (xn; 𝛽).

10 See Lele and Keim (2006) for a related simulation-based approach to estimation when the prevalence rate is unknown.
11 One existing qualitative response model estimator for the case of a known prevalence rate (Steinberg and Cardell 1992) can be
readily implemented using the sample weights under a use-availability sample design with exogenous stratification. However,
this estimator has been shown to be quite inefficient and is subject to convergence problems in small samples (see Lancaster and
Imbens 1996).
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When theprevalence rate is known, ournewestimator for the casewhen x is discrete is basedonananalog
of the optimization problem described in Eq. (5); specifically, it involves maximizing ∑K

k=1N1k ln (P (xk; 𝛽))
subject to q = ∑K

k=1P (xk; 𝛽) f̃ (xk). This estimator (𝛽̃qkn) can be expressed in an alternative way as:

𝛽̃qkn = argmax
𝛽

N1∑

i=1
ln (P (xi; 𝛽)) s.t. N0q =

N0∑

j=1
P
(
x j; 𝛽

)
. (20)

The Lagrangian for the optimization problem in Eq. (20) is:

 (𝛽, 𝜇) =
N1∑

i=1
ln (P (xi; 𝛽))+ 𝜇

(

N0q−
N0∑

j=1
P
(
x j; 𝛽

)
)

, (21)

and the first-order conditions are:

𝜕
𝜕𝛽

=
N1∑

i=1

P′
𝛽
(xi; 𝛽)

P (xi; 𝛽)
− 𝜇

N0∑

j=1
P′
𝛽

(
x j; 𝛽

)
= 0. (22)

𝜕
𝜕𝜇

= N0q−
N0∑

j=1
P
(
x j; 𝛽

)
= 0. (23)

Once again, the sample moment conditions do not require knowledge of the points of support, and they
remain valid even when x is not discrete. A proof for the consistency of this estimator is provided in
Appendix A.

It is desirable to have a consistent estimate of 𝛽 to use as an initial value in the search for a solution
to the above optimization problem. It can be shown that the limit value for the Lagrange multiplier 𝜇 in
Eq. (21) is equal to N1∕ (N0q). Similar to the approach used by Manski and McFadden (1981) to develop an
initial consistent estimator for the standard choice-based sampling problem, one can consistently estimate 𝛽
by replacing 𝜇 with its limit value and maximizing the following pseudo-likelihood function:

L =
N∑

n=1
sn ln (P (xn; 𝛽))−

N1
N0q

(1− sn)P (xn; 𝛽). (24)

The first-order conditions for this optimization problem are equivalent to those provided in Eq. (16).
We refer to our estimation methodology for the known prevalence rate case as “calibrated qualitative

response estimation”, because the estimator is obtained by calibrating the response probabilities so that
their average value within the supplementary sample is equal to the population prevalence rate q. Following
standard terminology for the classic qualitative response framework, we refer to our model as a “calibrated
probit” when P (x; 𝛽) is cumulative standard normal, and as a “calibrated logit” when P (x; 𝛽) is cumulative
standard logistic.

The estimator 𝛽̃qkn is calibrated to ensure that the average predicted probability of participation in the
supplementary sample is consistent with the prevalence rate, even in small samples. To solve the constrained
optimization problem for this estimator, one can rely on readily available algorithms, such as the maxLik
package in R, the nonlinear optimization routines in SAS@/IML@, or the CML application in GAUSS@.

As discussed in Section 3.3, the covariancematrix for 𝛽̃qkn can be obtainedusing aGMM framework. Since
the terms of Eq. (21) through (23) are sample-specific, it is again straightforward to generalize this estimator
to account for more complex sampling schemes by separately applying the relevant set of sample weights to
each term. The generalized optimization problem is:

 (𝛽, 𝜇) =
N1∑

i=1
w1i ln (P (xi; 𝛽))+ 𝜇

(

N0q−
N0∑

j=1
w0 jP

(
x j; 𝛽

)
)

, (25)
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and the associated first-order conditions are:

𝜕
𝜕𝛽

=
N1∑

i=1
w1i

P′
𝛽
(xi; 𝛽)

P (xi; 𝛽)
− 𝜇

N0∑

j=1
w0 jP′𝛽

(
x j; 𝛽

)
= 0. (26)

𝜕
𝜕𝜇

= N0q−
N0∑

j=1
w0 jP

(
x j; 𝛽

)
= 0. (27)

3.3 GMM Estimation Framework
Although the conditional response probability parameters can be estimated for both the unknown and
known prevalence rate cases using the pseudo-maximum likelihood framework described previously, the
usual estimate of the covariance matrix of the parameter estimates based on the information matrix will not
be valid. Intuitively, the replacement of the exact formula for q

(∫ P (x; 𝛽) dF (x)
)
with its sample analog

(∑N0
j=1P

(
x j; 𝛽

)
∕N0

)

reduces the precision of the estimators to some degree. Following Lancaster and Imbens
(1996), we recast our estimation problems using the GMM framework, relying on moment conditions derived
from the scores of our pseudo-likelihood functions. Consider the population moment conditions E (g1 (x; 𝜃))
= 0 and E (g2 (x; 𝜃)) = 0, where:

g1 (x; 𝜃) = s
P′
𝛽
(x; 𝛽)

P (x; 𝛽)
− (1− s)

(
N1
N0q

)

P′
𝛽 (x; 𝛽), (28)

g2 (x; 𝜃) = (1− s) (q− P (x; 𝛽)). (29)

The validity of these moment conditions can be verified by applying the following formula for E (s|x):

E (s|x) = P (s = 1|x) =
N1
N P (x; 𝛽)∕q

N1
N P (x; 𝛽)∕q+

N0
N

. (30)

Taking the conditional expectation of g1 (x; 𝜃) in Eq. (28) and substituting the formula for E (s|x) from
Eq. (30) yields:

E (g1 (x; 𝜃) |x) =
N1
N P

′
𝛽
(x; 𝛽)∕q

N1
N P (x; 𝛽)∕q+

N0
N

−
(

N1
N0q

) N0
N P

′
𝛽
(x; 𝛽)

N1
N P (x; 𝛽)∕q+

N0
N

, (31)

which does in fact equal zero. It is easily verified that the second moment condition is also satisfied.

Let 𝜃 =
(
𝛽

q

)

for the case where the prevalence rate is unknown and 𝜃 = 𝛽 for the case where it is

known. Thus, the model is exactly identified in the former case and over-identified in the latter. Let g (x; 𝜃)

represent the vector
[
g1 (x; 𝜃)
g2 (x; 𝜃)

]

and define the associated vector of sample moment conditions as: gN (x; 𝜃)

=
[
gN1

(x; 𝜃)
gN2

(x; 𝜃)

]

=
⎡
⎢
⎢
⎣

1
N
∑N

n=1g1 (xn; 𝜃)
1
N
∑N

n=1g2 (xn; 𝜃)

⎤
⎥
⎥
⎦

. In the exactly identified case involving an unknownprevalence rate, the

GMM estimator based on the above moment conditions will be identical to the pseudo-maximum likelihood
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estimator 𝜃̃qunk =
[
𝛽̃qunk
q̃unk

]

. Since the moment conditions are valid, the asymptotic covariance matrix for this

estimator can be estimated, subject to the usual regularity conditions,12 using the standard GMM formula:

V
[√

N
(
𝜃̃ − 𝜃

)]

≅
(

GN,qunk
(
x; 𝜃̃qunk

)′ S̃−1N,qunkGN,qunk
(
x; 𝜃̃qunk

))−1
, (32)

where S̃N,qunk = 1
N
∑N

n=1g
(
xn; 𝜃̃qunk

)
g
(
xn; 𝜃̃qunk

)′ and GN,qunk
(
x; 𝜃̃qunk

)
=

⎡
⎢
⎢
⎢
⎣

𝜕gN1

𝜕𝛽

𝜕gN1

𝜕q
𝜕gN2

𝜕𝛽

𝜕gN2

𝜕q

⎤
⎥
⎥
⎥
⎦

evaluated at

𝜃 = 𝜃̃qunk. Define the elements of the matrix SN = 1
N
∑N

n=1g (xn; 𝜃) g (xn; 𝜃)
′ as

[
s11 s12
s21 s22

]

, where:

s11 =
1
N

N1∑

i=1

P′
𝛽
(xi; 𝛽)P𝛽 (xi; 𝛽)
P (xi; 𝛽)2

+ 1
N

(
N1
N0q

)2 N0∑

j=1
P′
𝛽

(
x j; 𝛽

)
P𝛽

(
x j; 𝛽

)

s12 = − 1
N

(
N1
N0q

) N0∑

j=1

(
q− P

(
x j; 𝛽

))
P′
𝛽

(
x j; 𝛽

)

s21 = − 1
N

(
N1
N0q

) N0∑

j=1

(
q− P

(
x j; 𝛽

))
P𝛽

(
x j; 𝛽

)

s22 =
1
N

N0∑

j=1

(
q− P

(
x j; 𝛽

))2
. (33)

Then S̃N,qunk = SN evaluated at 𝜃 = 𝜃̃qunk. The elements of matrix GN,qunk (x; 𝜃) are defined as follows:

𝜕gN1

𝜕𝛽
= 1

N

N1∑

i=1

1
P (xi; 𝛽)

(

𝜕P (xi; 𝛽)
𝜕𝛽𝜕𝛽′

−
P′
𝛽
(xi; 𝛽)P𝛽 (xi; 𝛽)
P (xi; 𝛽)

)

− 1
N

(
N1
N0q

) N0∑

j=1

𝜕P
(
x j; 𝛽

)

𝜕𝛽𝜕𝛽′

𝜕gN1

𝜕q = 1
N

(
N1
N0q2

) N0∑

j=1
P′
𝛽

(
x j; 𝛽

)

𝜕gN2

𝜕𝛽
= − 1

N

N0∑

j=1
P𝛽

(
x j; 𝛽

)

𝜕gN2

𝜕q = N0
N . (34)

For the case of a known prevalence rate, one can estimate 𝛽 using the constrained pseudo-maximum
likelihoodestimator 𝛽̃qkn defined inEq. (20)andrelyon the followingGMMformula for its estimatedcovariance
matrix:

V
[√

N
(
𝛽̃qkn − 𝜃

)]

≅
(

GN,qkn
(
x; 𝛽̃qkn

)′ S̃−1N,qknGN,qkn
(
x; 𝛽̃qkn

))−1
, (35)

where S̃N,qkn = 1
N
∑N

n=1g
(
xn; 𝛽̃qkn

)
g
(
xn; 𝛽̃qkn

)′ and GN,qkn
(
x; 𝛽̃qkn

)
=

⎡
⎢
⎢
⎢
⎣

𝜕gN1

𝜕𝛽
𝜕gN2

𝜕𝛽

⎤
⎥
⎥
⎥
⎦

, evaluated at 𝛽 = 𝛽̃qkn.

12 These include, for example, rank, order, and uniqueness conditions for identification as well as conditions to ensure that the
sample moments converge in probability to their expectation and have a finite asymptotic covariance matrix. See Hansen (1982)
and Newey and McFadden (1994) for detailed discussions of the regularity conditions.
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Alternatively, one can use the related GMMestimator of 𝛽 that solves the following optimization problem:

min
𝛽

gN (x; 𝛽)′ S̃−1N gN (x; 𝛽) , (36)

where S̃N = 1
N
∑N

n=1g
(
xn; 𝛽̃

)
g
(
xn; 𝛽̃

)′ is an estimate of the asymptotic covariancematrix of
√
NgN (x; 𝛽) based

on the initial consistent estimator
(
𝛽̃
)
of𝛽, obtainedviaunconstrainedmaximizationof thepseudo-likelihood

function defined in Eq. (24). The covariance matrix for this alternative estimator (𝛽̃gmm) may be estimated as:

V
[√

N
(
𝛽̃gmm − 𝜃

)]

≅
(

GN
(
x; 𝛽̃gmm

)′ S̃−1N,gmmGN
(
x; 𝛽̃gmm

))−1
, (37)

where S̃N,gmm = 1
N
∑N

n=1g
(
xn; 𝛽̃gmm

)
g
(
xn; 𝛽̃gmm

)′ and GN
(
x; 𝛽̃gmm

)
=

⎡
⎢
⎢
⎢
⎣

𝜕gN1
𝜕𝛽
𝜕gN2
𝜕𝛽

⎤
⎥
⎥
⎥
⎦

, evaluated at 𝛽 = 𝛽̃gmm.

The two estimators for the case where the prevalence rate is known, 𝛽̃qkn and 𝛽̃gmm, are asymptotically
equivalent. Intuitively, as the sample size increases, the Lagrange multiplier 𝜇 in the first-order condition
presented in Eq. (22) will converge to

(
N1
N0q

)

; consequently, the two estimators will converge to the same
estimator as the first-order conditions and the moment conditions become aligned and the solution to
the moment conditions becomes more exact. For a formal proof of the asymptotic equivalence between
a constrained discrete choice maximum likelihood estimator under choice-based sampling and a GMM
estimator that relies on the score and constraint conditions from this problem as moments, refer to Imbens
(1992).

The above formulas for the estimators and their covariance matrices are readily generalized to account
for more complex sampling schemes by simply weighting the sample moment conditions:

gN1,w (x; 𝜃) =
1
N

N∑

n=1
wn

(

sn
P′
𝛽
(xn; 𝛽)

P (xn; 𝛽)
− (1− sn)

(
N1
N0q

)

P′
𝛽 (xn; 𝛽)

)

(38)

gN2,w (x; 𝜃) =
1
N

N∑

n=1
wn (1− sn) (q− P (xn; 𝛽)) , (39)

where wn represents the sample weight for observation n.

4 Incorporating Imperfect Knowledge About q
Existing research on choice-based sampling estimators for qualitative response problems has focused on
the polar opposite cases of a known and an unknown prevalence rate. In practical applications, however,
knowledge of the prevalence rate will often fall somewhere between these extremes. For instance, an estimate
of the prevalence rate might be available based on a relatively small representative sample of participants
and nonparticipants. Alternatively, a working estimate might be available based on informal projections,
experience, and/or judgment.

Imbens and Lancaster (1994) have proposed a general approach for incorporating stochastic information
regarding population parameters within a GMM framework through the introduction of additional moment
conditions.13 The uncertainty surrounding the true parameter values is then accounted for by assigning less
weight to these conditions than would be assigned if the knowledge were certain. Below, we propose an
adaptation of the Imbens–Lancaster methodology that permits the incorporation of imperfect information
about the prevalence rate into our estimation framework.

13 I am grateful to the reviewer for suggesting that I explore the applicability of the Imbens-Lancaster methodology to this
problem.
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The GMM estimator for the case of a known prevalence rate (𝛽̃gmm) was derived in Section 3 by apply-
ing the sample moment conditions based on Eqs. (28) and (29) after setting q equal to q∗. When the value
of a population parameter, such as the prevalence rate, is not known but is instead estimated based on
an independent sample, Imbens and Lancaster propose incorporating this knowledge via a new moment
condition: E (m (x; 𝜃)) = 0. The general formula for the covariance matrix of this constrained GMM estima-
tor

(

𝜃gmm

)

is V
[√

N
(

𝜃gmm − 𝜃
)]

=
(

Ω−1 + Γ′
mΔ

−1
m Γm

)−1
, where Ω represents the asymptotic covariance

matrix of the unconstrained estimator of 𝜃, Γm = 𝜕m (x; 𝜃)∕𝜕𝜃′, and Δm = E
(
m (x; 𝜃)m(x; 𝜃)′

)
. The term

Γ′
mΔ

−1
m Γm is referred to as the “gain in precision” due to the imposition of the constraint.
When the prevalence rate is estimated based on an independent sample of size M, one can account for

this information by introducing an additional moment condition, E
(
g3 (x; 𝛽)

)
= 0, where

g3 (x; 𝛽) = (1− s) (q∗ − P (x; 𝛽)) . (40)

So,whereas g3 (x; 𝛽) replaces g2 (x; 𝜃) inEq. (29) andq∗ replacesq inEq. (28)when theprevalence rate is known
to equal q∗ with certainty, E

(
g3 (x; 𝛽)

)
= 0 is introduced as an additional moment condition when q∗ instead

represents an independent estimate of the prevalence rate.14 One then obtains an estimator 𝜃gmm =
(
𝛽gmm
q̂gmm

)

by solving the following GMM optimization problem:

min
𝜃

gN (x; 𝜃)′WNgN (x; 𝜃), (41)

where thevectorof samplemomentconditions isnowdefinedas gN (x; 𝜃) =
⎡
⎢
⎢
⎢
⎣

gN1
(x; 𝜃)

gN2
(x; 𝜃)

gN3
(x; 𝜃)

⎤
⎥
⎥
⎥
⎦

. Thenewweightmatrix

is specifiedasWN =
[
S̃−1N 0
0 𝜔

(
𝛽̃
)

]

. The term S̃−1N is equal to the inverse of the valueofSN , as defined inEq. (33),

evaluated using a consistent initial estimator of 𝛽 (𝛽̃) and the independently estimated value of the prevalence
rate. The term𝜔

(
𝛽̃
)
represents theweightassigned to thenewsamplemoment conditionbasedonaconsistent

estimate of 𝛽. Under the assumption that (M∕N) converges to a constant as N grows large, Imbens and
Lancaster show that the optimal value for𝜔 (𝛽) is the inverse of

(
N0
M Δg3

)

, whereΔg3 = E
(
g3 (x; 𝛽) g3(x; 𝛽)′

)
.15

A feasible estimate of the optimal weight
(
𝜔
(
𝛽̃
))

is used for estimation, which is computed by replacing
Δg3 with the following estimate based on the supplementary sample: Δ̃g3 =

∑N0
j=1

(
q∗ − P

(
x j; 𝛽̃

))2 ∕N. The

asymptotic covariance matrix of the resulting constrained estimator
(

𝜃gmm =
(
𝛽gmm
q̂gmm

))

will be equal to:

V
[√

N
(
𝜃̃gmm − 𝜃

)]

=
(

Ω−1 +
[
Γ′
g3
Δg3Γg3 0
0 0

])−1

, (42)

where Ω−1 = V
[√

N
(
𝜃̃qunk − 𝜃

)]−1
is the inverse of the asymptotic covariance of the unconstrained

estimator 𝜃̃qunk and Γg3 = − 1
N
∑N0

j=1P𝛽
(
x j; 𝛽

)
. The expression Γ′

g3
Δg3Γg3 reflects the gain in precision of 𝛽gmm

over 𝛽̃qunk.

14 This sample need not include covariates relevant to the participation decision, so long as participation status is recorded.
The researcher does not require direct access to the sample so long as the sample proportion of participants and sample size are
available.
15 When the size of the independent sample used to estimate the prevalence rate (M) is small (large) relative to the size of the
supplementary estimation sample (N0), less (more) weight will be placed on the moment condition to reflect the difference in
precision of an estimate of q based on a sample of sizeM rather than a supplementary sample of size N0.
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The estimated covariance matrix of the constrained GMM estimator is obtained from the following
equation:

V
[√

N
(

𝜃gmm − 𝜃
)]

≅
(

GN

(

x; 𝜃gmm

)′
ŴN,gmmGN

(

x; 𝜃gmm

))−1
, (43)

where ŴN,gmm =
[
S−1N 0
0 𝜔 (𝜃)

]

and GN

(

x; 𝜃gmm

)

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝜕gN1
𝜕𝛽

𝜕gN1
𝜕q

𝜕gN2
𝜕𝛽

𝜕gN2
𝜕q

𝜕gN2
𝜕𝛽

0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, both evaluated at 𝜃gmm. The elements of

GN (x; 𝜃) are defined in Eq. (34).
Ifq∗ is not basedonan independent representative sample, one can specify𝜔 (𝜃) basedonone’s perceived

level of confidence in the estimate. At one extreme, when the value of this weight is set close to zero, the value
of the constrained estimate

(

𝜃gmm

)

will approach the value of the unconstrained estimate
(
𝜃̃qunk

)
. Towards

the other extreme, when the value of the weight is increased to a very high value, the value of the constrained
estimate will approach the value of the estimate associated with a fully known prevalence rate

(
𝜃̃gmm

)
.

5 Considerations for Applying the New Estimators
As emphasized in Section 1, use-availability sampling is a viable strategy for estimating conditional response
probabilities in a variety of circumstances where there is an abundance of information on participants, but a
relative dearth of information on non-participants. In practice, however, there have been very few empirical
applications of this strategy to estimate the drivers of participation (or presence) when standard qualitative
choice estimation techniques are not feasible. Hopefully, the new estimators introduced in this paper, which
readily incorporate sample weights from relatively complex sampling designs, will generate renewed interest
in use-availability sampling strategies for qualitative choice analysis.

5.1 Representativeness and Compatibility of Data Sources
An important consideration when selecting data sources for implementing a use-availability model of partic-
ipation is that they need to be representative of the underlying populations of interest. The supplementary
sample must be representative of the overall population of participants and non-participants, while the pri-
mary sample must be representative of the sub-population of participants. In the case where stratified or
clustered samples are available, sample weights must be available to make the samples representative, and
these weights must be applied when estimating the models.

Many social benefit programs are means-tested. When selecting a supplementary sample to study the
drivers of participation in such programs, it is important to restrict the sample to individuals who are eligible
for the benefit. It is therefore important for the supplementary data source to include reliable measures of
the income concepts, family characteristics, and other relevant variables underlying the program eligibility
criteria.

Another consideration is that the relevant covariates for the analysis need to be present in both the
primary and supplementary samples, and they must be comparably measured across the two data sources.
It is essential that the differences in covariate values across data sets reflect the underlying population
differences rather than conceptual discrepancies or systematic measurement errors.

5.2 Precision
For a fixed overall sample size, use-availability estimates will be less precise than standard qualitative
choice model estimates. However, in the case a low prevalence rate, the supplementary sample under a



14 | B. Erard

use-availability design will consist largely of non-participants, while the primary sample will consist entirely
of participants, similar to the overall estimation sample used for a traditional qualitative choice analysis.
In such cases, the relative difference in precision will be more modest. In the case of a higher prevalence
rate, this disadvantage will be more substantial, especially in the absence of any knowledge regarding the
prevalence rate. Nevertheless, the use-availability approach serves as a viable estimation strategy in a variety
of circumstanceswhere standard qualitative choicemodel estimation is not feasible.Moreover, in some cases,
the use-availability estimation strategywill permit estimation based on amuch larger overall sample, thereby
overcoming its disadvantage with regard to estimator precision. For instance, Erard et al. (2020) were able to
employ a large primary sample of income tax filers from IRS records and a large sample of filers and nonfilers
from the Current Population Survey to obtain reasonably precise calibrated probit estimates of the drivers of
filing compliance, despite prevalence rates (filing rates) well in excess of 90 percent.

6 Conclusions
Frequently, researchers have access to detailed information on the relevant characteristics of participants in
a program. However, the lack of comparable information on non-participants precludes the application of
standard qualitative response models to examine the drivers of participation. A feasible alternative approach
is to supplement the data on participants with a representative sample of observations from the general
population of participants and nonparticipants. This paper presents some new qualitative choice estimators
for a such a sampling scheme that rival the performance of the best existing estimators. An important
advantage of these new estimators is that they are more readily generalized for application under relatively
complexuse-availability designs; all they require is a set of sampleweights tomake the samples representative
of their underlying populations. These new estimators therefore significantly broaden the scope of potential
data sources that can be used to estimate conditional response probabilities.

In the case where the prevalence rate is unknown, both the new and existing estimators are less precise
and are subject to periodic convergence problems, particularlywhen q is fairly close to either of its boundaries
(0 or 1). These problems can be alleviated either by using a larger estimation sample or by incorporating
imperfect knowledge regarding the prevalence rate using the methodology described in this paper.
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Appendix A: Consistency of Maximum Likelihood Estimators
The consistency of the new quasi-maximum likelihood estimators presented in this paper follows directly
from the proofs of consistency provided by Manski andMcFadden (1981, pp. 36–45) for the qualitative choice
estimators they constructed for application with a purely choice-based sampling design. We maintain their
assumption that certain regularity conditions are satisfied (Assumptions 1.1–1.5, p. 12) and we rely on the
same lemmas provided in that study (pp. 37–38):

Lemma 1.1. Let fN (x, 𝜙) , N = 1,… ,∞, be a sequence of measurable functions on a measurable space X and
for each x ∈ X, a continuous function for 𝜙 ∈ Φ, Φ being compact. Then there exists a sequence of mea-
surable functions 𝜙N (x) , N = 1,…∞, such that fN (x, 𝜙N (x)) = sup

𝜙∈Φ
fN (x, 𝜙) for all x ∈ X and N = 1,… ,∞.
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Furthermore, if for almost every x ∈ X, fN (x, 𝜙) converges to f (𝜙) uniformly for all 𝜙 ∈ Φ, and if f (𝜙) has a
unique maximum at 𝜙∗ ∈ Φ, then 𝜙n converges to 𝜙

∗ for almost every x ∈ X.

Lemma 1.2. Let 𝜇 be a probability measure over a Euclidean space S, letΦ be a compact subset of a Euclidean
space, and let gs,𝜙 be a continuous function of𝜙 for each s ∈ S and ameasurable function of s for each𝜙 ∈ Φ.
Assume also that |g (s, 𝜙)| ≤ 𝛼(s) for all s, 𝜙, and some 𝜇–integrable 𝛼. For any sequence x = s1,s2,…, let

fN (x, 𝜙) =
N∑

n=1
g(sn, 𝜙)∕N, and let X be the set of all sequences x. If sequences x are drawn as random samples

from S, then for almost every realized such sequence, as N →∞, fN (x, 𝜙)→ E (g (x, 𝜙)) ≡ f (𝜙) uniformly for
all 𝜙 ∈ Φ.

Lemma 1.3 . Let g (s, 𝜙)beareal valued functionoveraspaceS xΦ such thatg is integrablewith respect toamea-
sure𝜇 over S and g (s, 𝜙) ≥ 0, all s ∈ S,𝜙 ∈ Φ. Let𝜙∗ be an element ofΦ such that g (s, 𝜙∗) > 0 for almost every
s ∈ S and ∫S (g (s, 𝜙∗)− g (s, 𝜙)) d𝜇 ≥ 0, all 𝜙 ∈ Φ. Then the expression f (𝜙) = ∫Sg (s, 𝜙∗) ln (g (s, 𝜙)) d𝜇
attains its maximum at 𝜙 = 𝜙

∗. The maximum is unique if, for every 𝜙 ∈ Φ such that 𝜙 ≠ 𝜙
∗, there exists an

S𝜙 ⊂ S such that

∫
S𝜙

g (s, 𝜙) d𝜇 ≠ ∫
S𝜙

g (s, 𝜙∗) d𝜇.

A.1 Estimators for a known covariate distribution

For the estimator described in Eq. (4) for the case of an unknown prevalence rate, let fN (x; 𝛽)
= 1

N1

∑N1
n=1 ln

(
P(xn;𝛽)∫ P(z;𝛽) dF(z)

)

for a random primary sample xp = x1, x2,… , xN1
, and allow 𝛽

∗ to represent

the true value of 𝛽. It follows from Lemma 1.2 that, as N1 →∞, fN (x; 𝛽)
a.s.
←←←←←←←←←←←←←←←←←→E

[

ln
(

P(x;𝛽)
∫ P(z;𝛽) dF(z)

)]

= P(x;𝛽∗)
∫ P(z;𝛽∗) dF(z) ln

(
P(x;𝛽)

∫ P(z;𝛽) dF(z)

)

= f (𝛽) uniformly in 𝛽. FromLemma 1.3, it further follows that f (𝛽) is uniquely
maximized at 𝛽 = 𝛽

∗. Finally, since fN (x; 𝛽) converges to f (𝛽) uniformly in 𝛽 and has a unique optimum
at 𝛽∗, the estimator 𝛽̃ based on Eq. (4) is consistent in accordance with Lemma 1.1. The consistency of
q̃ = ∫ P

(
x; 𝛽̃

)
dF (x) follows directly from the consistency of 𝛽̃. Since the estimator defined in Eq. (5) for the

case of a known prevalence rate is a constrained version of the estimator 𝛽̃, its consistency is assured by the
consistency of 𝛽̃.

A.2 Estimators for an Unknown Covariate Distribution

For the estimator described in Eq. (14) for an unknown prevalence rate, let fN (x; 𝛽) =
1
N1

∑N1
n=1 ln

(
P(xn;𝛽)

1
N0

∑N0
m=1P(xm;𝛽)

)

for the randomly selected primary (xp = x1, x2,… , xN1
) and supplementary (xs =

x1, x2,… , xN0
) samples. This function may be re-expressed as: fn (x; 𝛽) = 1

N1

(∑N1
n=1 ln

(
P(xn;𝛽)∫ P(z;𝛽) dF(z)

))

+

ln
(

∫ P(z;𝛽) dF(z)
1
N0

∑N0
m=1P(xm;𝛽)

)

. By Lemma 1.2, the first term of this function converges to P(x;𝛽∗)
∫ P(z;𝛽∗) dF(z) ln

(
P(x;𝛽)

∫ P(z;𝛽) dF(z)

)

=

f (𝛽) uniformly in 𝛽 asN1 →∞. In addition, the second term converges to zero asN0 →∞; the denominator of
the expression in parentheses is a consistent estimator of the numerator (i.e., the prevalence rate), so that the
natural log of the expression tends to zero as the supplementary sample size increases. Therefore, function
fn (x; 𝛽) converges uniformly to f (𝛽) as the overall sample size (N = N0 + N1) increases and the ratio (N1∕N)
is held fixed. Lemma 1.3 further implies that f (𝛽) is uniquely maximized at 𝛽 = 𝛽

∗. Since fN (x; 𝛽) converges
to f (𝛽) uniformly in 𝛽 and has a unique optimum at 𝛽∗, it follows from Lemma 1.1 that the estimator 𝛽̃qunk
based on Eq. (14) is consistent. Since∑N0

j=1P
(
x j; 𝛽

)
∕N0 converges to q and 𝛽̃qunk converges to 𝛽, it follows that

q̃unk =
∑N0

j=1P
(
x j; 𝛽̃qunk

)
∕N0 is a consistent estimator of q. The estimator 𝛽̃qknown presented in Eq. (20) for the
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case of a known prevalence rate is a constrained version of the estimator 𝛽̃qunk. Therefore, its consistency is
assured by the consistency of 𝛽̃qunk.

Appendix B: Monte Carlo Analysis
We have undertaken a Monte Carlo analysis to compare the small sample performance of our new estimators
against the Cosslett (1981) and Lancaster and Imbens (1996) estimators. In the simulations, the conditional
probability of participation is described by a logistic function of two independent standard normal regressors
and an intercept. The coefficients of the two regressors are fixed at one, while the intercept is varied to
achieve alternative approximate values of the prevalence rate q, including 0.125, 0.25, 0.50, 0.75, and 0.875.
The Bernoulli sampling scheme described in Section 3.1.1 is used to draw the primary and supplementary
samples. For each experiment, 1000 replications are completed and the following statistics are reported for
each parameter: mean and median parameter estimate; mean asymptotic standard deviation (ASD) of the
parameter estimate; standard deviation of the parameter estimates (SSD); and themedian absolute deviation
from the median (MAD) parameter estimate. For each replication, the combined sample size (N) is set to 600,
and the Bernoulli parameter (h) is fixed at 0.50.

B.1 Known prevalence rate

For theknownprevalence ratecase,wecompare thesmall sampleperformanceof thecalibrated logit estimator
(
𝛽̃qkn

)
defined in Eq. (20) and the associated GMM estimator obtained based on the optimization problem

described in Eq. (36) against the performances of two benchmark estimators. The first of these benchmarks is
motivated by the choice-based estimation framework of Cosslett (1981), and it is obtained as the solution to
the following optimization problem:

max
𝛽

min
𝜆1

N∑

n=1

(
sn ln

(
P(xn; 𝛽)

)
− ln (𝜆1P (xn; 𝛽)+ 1− 𝜆1q)

)
, (44)

where𝜆1 is aweight factor that is estimated jointlywith 𝛽.We refer to this estimator as the “Cosslett” estimator
in ourMonte Carlo simulations. Observe that the solution for this estimator is at a saddle point of the objective
function in Eq. (44).

The second benchmark estimator is the one proposed by Lancaster and Imbens (1996) for the case of a
known prevalence rate. This estimator is obtained by applying GMM estimation based on the following three
moment conditions:

E
(
P′
𝛽
(x; 𝛽)

P (x; 𝛽) (s− R (x; 𝛽, q, h))
)

= 0 (45)

− 1
qE (s− R (x; 𝛽, q, h)) = 0 (46)

E (h− R (x; 𝛽, q, h)) = 0, (47)

where R (x; 𝛽, q, h) was previously defined in Section 3.1.1.
The Monte Carlo simulation results are summarized in Table 1. All of the estimators perform similarly.

For prevalence rates below 75 percent, the estimators show little sign of bias. At higher prevalence rates, a
modest degree of upward bias is present in each of the intercept estimates, but the slope estimates remain
essentially unbiased. The precision of each of the estimators deteriorates as the prevalence rate increases.
Presumably, this is because the contrast between the primary and supplementary samples is less sharp at
high prevalence rates, owing to the high shares of participants in both samples. Overall, the estimators all
perform well and exhibit comparable levels of precision.
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Table 1:Monte Carlo simulation results, prevalence rate known.

Cosslett Lancaster–Imbens Calibrated logit GMM alternative

𝜷0 𝜷1 𝜷2 𝜷0 𝜷1 𝜷2 𝜷0 𝜷1 𝜷2 𝜷0 𝜷1 𝜷2

q= 0.125, N = 600, h= 0.50

Actual −2.574 1.00 1.00 −2.574 1.00 1.00 −2.574 1.00 1.00 −2.574 1.00 1.00
Mean −2.688 1.00 0.99 −2.570 1.00 1.00 −2.574 1.02 1.01 −2.574 1.02 1.01
Median −2.685 1.00 0.99 −2.566 1.00 1.00 −2.572 1.01 1.01 −2.571 1.01 1.01
ASD 0.081 0.13 0.13 0.080 0.13 0.13 0.086 0.15 0.15 0.085 0.15 0.15
SSD 0.118 0.13 0.14 0.085 0.13 0.15 0.087 0.15 0.16 0.087 0.15 0.16
Mad 0.080 0.09 0.10 0.057 0.09 0.10 0.059 0.10 0.11 0.059 0.10 0.11

q= 0.25, N = 600, h = 0.50

Actual −1.492 1.00 1.00 −1.492 1.00 1.00 −1.492 1.00 1.00 −1.492 1.00 1.00
Mean −1.530 1.01 1.01 −1.490 1.00 1.00 −1.488 1.02 1.02 −1.489 1.02 1.02
Median −1.522 1.00 1.00 −1.487 1.00 1.00 −1.486 1.01 1.01 −1.486 1.01 1.01
ASD 0.065 0.16 0.16 0.064 0.15 0.15 0.067 0.17 0.17 0.066 0.17 0.17
SSD 0.087 0.16 0.16 0.065 0.17 0.17 0.067 0.17 0.18 0.066 0.17 0.18
Mad 0.055 0.10 0.12 0.045 0.11 0.12 0.045 0.11 0.12 0.045 0.11 0.12

q= 0.50, N = 600, h = 0.50

Actual 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00
Mean 0.017 1.02 1.03 0.013 1.00 1.01 0.021 1.01 1.02 0.018 1.01 1.02
Median 0.007 1.01 1.02 −0.000 0.99 1.00 0.006 1.00 1.01 0.004 1.00 1.01
ASD 0.081 0.22 0.22 0.079 0.21 0.21 0.087 0.23 0.23 0.087 0.23 0.23
SSD 0.084 0.22 0.23 0.084 0.23 0.23 0.096 0.23 0.24 0.091 0.23 0.23
Mad 0.052 0.15 0.15 0.050 0.15 0.15 0.056 0.15 0.15 0.055 0.15 0.15

q= 0.75, N = 600, h = 0.50

Actual 1.492 1.00 1.00 1.492 1.00 1.00 1.492 1.00 1.00 1.492 1.00 1.00
Mean 1.591 1.05 1.07 1.568 1.01 1.03 1.583 1.03 1.06 −1.568 1.02 1.04
Median 1.549 1.03 1.05 1.534 1.00 1.02 1.536 1.01 1.04 −1.523 0.99 1.02
ASD 0.271 0.37 0.37 0.255 0.36 0.36 0.268 0.37 0.37 0.265 0.36 0.37
SSD 0.281 0.39 0.38 0.288 0.42 0.41 0.284 0.39 0.38 0.270 0.39 0.38
Mad 0.170 0.25 0.25 0.180 0.28 0.26 0.170 0.26 0.25 0.164 0.26 0.25

q= 0.875, N = 600, h= 0.50

Actual 2.574 1.00 1.00 2.574 1.00 1.00 2.574 1.00 1.00 2.574 1.00 1.00
Mean 2.870 1.04 1.07 2.790 0.96 0.98 2.853 1.01 1.04 −2.810 1.00 1.03
Median 2.733 1.03 1.05 2.642 0.94 0.94 2.716 1.03 1.03 −2.653 0.99 0.99
ASD 0.722 0.68 0.72 0.598 0.78 0.83 0.612 0.59 0.61 0.613 0.61 0.64
SSD 0.633 0.65 0.68 0.717 0.70 0.74 0.606 0.68 0.71 0.694 0.65 0.70
Mad 0.338 0.42 0.40 0.434 0.49 0.46 0.345 0.42 0.41 0.347 0.42 0.42

B.2 Unknown Prevalence Rate

For the case of an unknown prevalence rate, the simulations compare the small sample performances of
our new estimator of 𝛽 and q based on Eq. (14) and the Cosslett–Lancaster–Imbens estimator described in
Section 3.1.1. The results are summarized in Table 2. Both estimators are subject to periodic convergence
problems in small samples. We report the performance statistics for a given estimator based on the subset
of replications that are free from convergence issues. The number of replications for which an estimator has
failed to converge is reported as “#Failures”.

Overall, our pseudo-maximum likelihood estimator performs comparably to the Cosslett–
Lancaster–Imbens estimator in terms of mean and median performance as well as precision. As with the
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Table 2:Monte Carlo simulation results, prevalence rate unknown.

Cosslett–Lancaster–Imbens Pseudo-MLE

𝜷0 𝜷1 𝜷2 q 𝜷0 𝜷1 𝜷2 q

q= 0.125, N = 600, h = 0.50

Actual −2.574 1.00 1.00 0.125 −2.574 1.00 1.00 0.125
Mean −2.667 1.04 1.04 0.14 −2.505 1.08 1.08 0.15
Median −2.525 1.03 1.03 0.14 −2.423 1.08 1.08 0.15
ASD 1.460 0.20 0.20 0.09 4.633 0.82 0.82 0.36
SSD 0.819 0.19 0.18 0.07 0.653 0.20 0.18 0.07
Mad 0.452 0.13 0.12 0.05 0.384 0.12 0.12 0.05
#Failures 99 297

q= 0.25, N = 600, h = 0.50

Actual −1.492 1.00 1.00 0.25 −1.492 1.00 1.00 0.25
Mean −1.602 1.06 1.05 0.25 −1.558 1.07 1.06 0.25
Median −1.474 1.04 1.04 0.25 −1.441 0.05 1.05 0.26
ASD 1.104 0.24 0.24 0.11 4.00 0.90 0.89 0.48
SSD 0.735 0.24 0.24 0.10 0.667 0.24 0.23 0.09
Mad 0.389 0.16 0.16 0.06 0.374 0.16 0.15 0.06
#Failures 26 123

q= 0.50, N = 600, h = 0.50

Actual 0.000 1.00 1.00 0.50 0.000 1.00 1.00 0.50
Mean 0.032 1.09 1.09 0.48 0.002 1.08 1.09 0.48
Median 0.041 1.04 1.04 0.50 0.048 1.04 1.04 0.50
ASD 0.934 0.37 0.37 0.15 3.295 1.01 1.02 0.56
SSD 0.846 0.39 0.42 0.13 0.839 0.38 0.40 0.13
Mad 0.463 0.22 0.21 0.08 0.451 0.22 0.21 0.08
#Failures 13 53

q= 0.75, N = 600, h = 0.50

Actual 1.492 1.00 1.00 0.75 1.492 1.00 1.00 0.75
Mean 1.951 1.28 1.25 0.72 1.832 1.24 1.21 0.71
Median 1.558 1.06 1.09 0.75 1.560 1.06 1.08 0.74
ASD 2.478 0.88 0.87 0.20 5.185 1.53 1.53 0.75
SSD 1.991 0.88 0.85 0.15 1.801 0.82 0.74 0.15
Mad 0.782 0.36 0.37 0.08 0.789 0.38 0.38 0.08
#Failures 86 89

q= 0.875, N = 600, h = 0.50

Actual 2.574 1.00 1.00 0.875 2.574 1.00 1.00 0.875
Mean 3.339 1.33 1.35 0.81 3.496 1.38 1.39 0.81
Median 2.801 1.13 1.08 0.87 2.867 1.13 1.09 0.87
ASD 3.889 1.16 1.20 0.26 7.146 2.01 1.96 0.79
SSD 2.859 1.11 1.25 0.16 3.126 1.26 1.29 0.17
Mad 1.391 0.55 0.55 0.06 1.456 0.58 0.57 0.07
#Failures 244 191

estimators for the case of a known prevalence rate, the current estimators show a deterioration in precision
as the prevalence rate increases, along with an upwardly biased intercept estimate when the prevalence rate
is relatively high (q = 0.75 and q = 0.875). However, this upward bias extends to the slope coefficients as well
for the case of an unknown prevalence rate. Overall, precision suffers when the prevalence rate is unknown,
especially in the case of the intercept estimate.
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Lancaster and Imbens (1996) have reported that their estimator has periodic convergence issues in small
samples, particularly when the true value of q is close to zero. This problem extends to our estimator. As noted
by Lancaster and Imbens, when q is close to zero, supplementary sampling is close to pure choice-based
sampling, and the choice-based sampling estimator of the intercept in a logit model is not identified when
q is unknown. Our simulation results indicate that convergence problems are also prevalent when the true
value of q is relatively high (q = 0.75 and q = 0.875). Convergence problems can be alleviated by employing
larger estimation samples or by incorporating imperfect knowledge regarding the prevalence rate using the
methodology described in Section 4.
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